Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres

نویسندگان

  • Weiwei Jin
  • Peng Lu
  • Shuixiang Li
چکیده

Particle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, starting both from the regular tetrahedron and the sphere packings. The dimer crystal and the quasicrystal approximant are used as initial configurations, as well as the two densest sphere packing structures. We characterize the evolution of spherotetrahedron packings from the ideal tetrahedron (s = 0) to the sphere (s = 1) via a single roundness parameter s. The evolution can be partitioned into seven regions according to the shape variation of the packing unit cell. Interestingly, a peak of the packing density Φ is first observed at s ≈ 0.16 in the Φ-s curves where the tetrahedra have small rounded corners. The maximum density of the deformed quasicrystal approximant family (Φ ≈ 0.8763) is slightly larger than that of the deformed dimer crystal family (Φ ≈ 0.8704), and both of them exceed the densest known packing of ideal tetrahedra (Φ ≈ 0.8563).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polytetrahedral nature of the dense disordered packings of hard spheres.

We study the structure of numerically simulated hard sphere packings at different densities by investigating local tetrahedral configurations of the spheres. Clusters of tetrahedra adjacent by faces present relatively dense aggregates of spheres atypical for crystals. The number of spheres participating in such polytetrahedral configurations increases with densification of the packing, and at t...

متن کامل

Exact constructions of a family of dense periodic packings of tetrahedra.

The determination of the densest packings of regular tetrahedra (one of the five Platonic solids) is attracting great attention as evidenced by the rapid pace at which packing records are being broken and the fascinating packing structures that have emerged. Here we provide the most general analytical formulation to date to construct dense periodic packings of tetrahedra with four particles per...

متن کامل

Dense-packing crystal structures of physical tetrahedra.

We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well-studied problems of sphere ...

متن کامل

Tetrahedral colloidal clusters from random parking of bidisperse spheres.

Using experiments and simulations, we investigate the clusters that form when colloidal spheres stick irreversibly to--or "park" on--smaller spheres. We use either oppositely charged particles or particles labeled with complementary DNA sequences, and we vary the ratio α of large to small sphere radii. Once bound, the large spheres cannot rearrange, and thus the clusters do not form dense or sy...

متن کامل

Athermal jamming of soft frictionless Platonic solids.

A mechanically based structural optimization method is utilized to explore the phenomena of jamming for assemblies of frictionless Platonic solids. Systems of these regular convex polyhedra exhibit mechanically stable phases with density substantially less than optimal for a given shape, revealing that thermal motion is necessary to access high-density phases. We confirm that the large system j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015